Permutations Destroying Arithmetic Progressions in Finite Cyclic Groups
نویسندگان
چکیده
A permutation π of an abelian group G is said to destroy arithmetic progressions (APs) if, whenever (a, b, c) is a non-trivial 3-term AP in G, that is c − b = b − a and a, b, c are not all equal, then (π(a), π(b), π(c)) is not an AP. In a paper from 2004, the first author conjectured that such a permutation exists of Zn, for all n 6∈ {2, 3, 5, 7}. Here we prove, as a special case of a more general result, that such a permutation exists for all n > n0, for some explicitly constructed number n0 ≈ 1.4 × 1014. We also construct such a permutation of Zp for all primes p > 3 such that p ≡ 3 (mod 8).
منابع مشابه
Permutations Destroying Arithmetic Structure
Given a linear form C1X1 + · · · + CnXn, with coefficients in the integers, we characterize exactly the countably infinite abelian groups G for which there exists a permutation f that maps all solutions (α1, . . . , αn) ∈ Gn (with the αi not all equal) to the equation C1X1+ · · ·+CnXn = 0 to non-solutions. This generalises a result of Hegarty about permutations of an abelian group avoiding arit...
متن کاملPermutations that Destroy Arithmetic Progressions in Elementary p-Groups
Given an abelian group G, it is natural to ask whether there exists a permutation π of G that “destroys” all nontrivial 3-term arithmetic progressions (APs), in the sense that π(b)− π(a) 6= π(c)− π(b) for every ordered triple (a, b, c) ∈ G3 satisfying b − a = c − b 6= 0. This question was resolved for infinite groups G by Hegarty, who showed that there exists an AP-destroying permutation of G i...
متن کاملForbidden arithmetic progressions in permutations of subsets of the integers
Permutations of the positive integers avoiding arithmetic progressions of length 5 were constructed in (Davis et al, 1977), implying the existence of permutations of the integers avoiding arithmetic progressions of length 7. We construct a permutation of the integers avoiding arithmetic progressions of length 6. We also prove a lower bound of 1 2 on the lower density of subsets of positive inte...
متن کاملEnumerating Permutations that Avoid Three Term Arithmetic Progressions
It is proved that the number of permutations of the set {1, 2, 3, . . . , n} that avoid three term arithmetic progressions is at most (2.7) n 21 for n ≥ 11 and at each end of any such permutation, at least ⌊ 2 ⌋−6 entries have the same parity.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 22 شماره
صفحات -
تاریخ انتشار 2015